
Extended and Reshetikhin twists for sl(3)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 5343

(http://iopscience.iop.org/0305-4470/32/28/312)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/28
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 5343–5354. Printed in the UK PII: S0305-4470(99)02737-7

Extended and Reshetikhin twists forsl(3)

Vladimir D Lyakhovsky† and Mariano A del Olmo
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Abstract. The properties of the setL of extended Jordanian twists for algebrasl(3) are studied.
Starting from the simplest algebraic construction—the peripheric Hopf algebraUP ′(0,1)(sl(3))—we
explicitly construct the complete family of extended twisted algebras{UE(θ)(sl(3))} corresponding
to the set of four-dimensional Frobenius subalgebras{L(θ)} in sl(3). It is proved that the
extended twisted algebras with different values of the parameterθ are connected by a special
kind of Reshetikhin twist. We study the relations between the family{UE(θ)(sl(3))} and the one-
dimensional set{UDJR(λ)(sl(3))} produced by the standard Reshetikhin twist from the Drinfeld–
Jimbo quantizationUDJ (sl(3)). These sets of deformations are in one-to-one correspondence:
each element of{UE(θ)(sl(3))} can be obtained by a limiting procedure from the unique point in
the set{UDJR(λ)(sl(3))}.

1. Introduction

The triangular Hopf algebras and twists (which preserve triangularity [1,2]) play an important
role in quantum group theory and applications [3–5]. Very few types of twist have been written
explicitly in a closed form. The well known example is the Jordanian twist (J T ) of the Borel
algebraB(2) ({H,E|[H,E] = E}) with r = H ∧ E [6], where the triangularR-matrix
R = (Fj )21F−1

j is defined by the twisting element [7,8]

Fj = exp{H ⊗ σ } (1.1)

with σ = ln(1 +E). In [9] it was shown that different extensions (ET ’s) of this twist exist.
Using the notion of the factorizable twist [10], the elementFE ∈ U(sl(N))⊗2

FE = 8e8j = exp

{
2ξ

N−1∑
i=2

E1i ⊗ EiNe−σ̃
}

exp{H ⊗ σ̃ } (1.2)

was proved to satisfy the twist equation, whereE = E1N , H = E11 − ENN is one of the
Cartan generatorsH ∈ h(sl(N)), σ̃ = 1

2 ln(1 + 2ξE) and{Eij }i,j=1,...,N is the standardgl(N)
basis.

Studying the family{L(α, β, γ, δ)α+β=δ} of carrier algebras for extended Jordanian twists
FE(α,β,γ,δ) [11] it is sufficient to consider the one-dimensional setL = {L(α, β)α+β=1} (for
different non-zeroγ ’s andδ’s the Hopf algebrasL E , obtained by the corresponding twistings,
are equivalent).

† On leave of absence from: Theoretical Department, Sankt-Petersburg State University, 198904, St Petersburg,
Russia.
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The connection of the Drinfeld–Jimbo (DJ ) deformation of a simple Lie algebrag [6,12]
with the Jordanian deformation was already pointed out in [8]. The similarity transformation
of the classicalr-matrix

rDJ =
rank(g)∑
i=1

tijHi ⊗Hj +
∑
α∈1+

Eα ⊗ E−α

performed by the operator exp(v adE1N ) turnsrDJ into the sumrDJ + v rj [8] where

rj = −v
(
H1N ∧ E1N + 2

N−1∑
k=2

E1k ∧ EkN
)
. (1.3)

Hence,rj is also a classicalr-matrix and defines the corresponding deformation. A contraction
of the quantum Manin planexy = qyx of UDJ (sl(2)) with the mentioned above similarity
transformation in the fundamental representationM = 1 + v(1− q)−1ρ(E12) results in the
Jordanian planex ′y ′ = y ′x ′ + vy ′2 of Uj (sl(2)) [7]. Thus, the canonical extended Jordanian
twisted algebraUE(1/2,1/2), which corresponds in our notation to the carrier subalgebraL (1/2,1/2),
can be treated as a limiting case for the parametrized set of Drinfeld–Jimbo quantizations. In
contrast to this fact, other extended twists ofU(sl(N))do not reveal such properties with respect
to the standard deformation. In particular, theUP(sl(4)) algebra twisted by the so-called
peripheric twist (PT ) was found to be disconnected from the Drinfeld–Jimbo deformation
UDJ (sl(4)).

In this paper we study the properties of the deformations induced inU(sl(3)) by the set
of extended twistsFE(α,β). We consider the deformations of simple Lie algebras. So, the
parametersα andβ (arising from the reparametrization of the root space) can be treated as
belonging toR1. The same is true for other parameters(λ, θ, . . .) appearing in this study. In
the twist equivalence transformations they can be considered as belonging toC1. But in the
present approach it is sufficient to treat them as real numbers.

We show that to any Hopf algebraUE(α,β) one can apply an additional Reshetikhin twist [13]
FR̃(λ) whose (Abelian) carrier subalgebra is generated byK ∈ h(sl(N)) andE ∈ L :

UE(α,β)
FR̃(λ)−→ UER̃(α,β,λ). (1.4)

However, the carrier subalgebra ofFR̃(λ) ◦ FE(α,β) is the same as forFE(α,β) because of the
isomorphism

UER̃(α,β,λ) ≈ UE(α+λ,β−λ). (1.5)

TwistsFR̃(λ) act transitively on the set{UE(α,β)}. Simultaneously we consider the canonical
Reshetikhin twistFR(θ) = eθH1⊗H2 [13] that performs the transition fromUDJ (sl(3)) to the
parametric quantization:

UDJ
FR(θ)−→ UDJR(θ). (1.6)

It is worth mentioning that in the case ofUDJ (gl(3)) such a kind of transformation can be used
to obtain possibilities for additional twistings [14].

Finally, the two sets of parametrized Lie algebras are formed:{g∗E(λ)} and{g∗DJR(θ)}. The
elements of both of them are dual tosl(3). Using the technique elaborated in [11,15] we prove
a one-to-one correspondence between the members of these sets: for anyλ0 fixed there is one
and only oneθ0 such thatg∗E(λ0) andg∗DJR(θ0) are the first-order deformations of each other.
This means that for anyUE(α,β)(sl(3)) there exists one and only oneUDJR(θ)(sl(3)) such that
these two Hopf algebras can be connected by a smooth sequence of quantized Lie bialgebras.

In section 2 we present a short list of basic relations for twists. The general properties
of extended twists forU(sl(3)) are displayed in section 3. There we construct explicitly the
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peripheric extended twisted algebraUP ′(sl(3)). In section 4 the special kind of Reshetikhin
twist for UP ′(sl(3)) is composed and as a result the family{UP ′R̃(λ)(sl(3))} is obtained. We
prove that this solves the problem of finding the whole set{UE(sl(3))} of extended twists. The
relations between the multiparametricDJ quantizations and twisted algebras{UE(sl(3))} are
studied in section 5, and their one-to-one correspondence is established. The defining relations
for the canonically extended twisted algebraU can

E (sl(3)) are presented in the appendix.

2. Basic definitions

In this section we briefly recall the basic properties of twists.
A Hopf algebraA(m,1, ε, S) with multiplicationm:A ⊗ A → A, coproduct1:A →

A ⊗ A, counitε:A → C, and antipodeS : A → A can be transformed [1] by an invertible
(twisting) elementF ∈ A ⊗ A, F = ∑

f
(1)
i ⊗ f (2)i , into a twisted oneAF (m,1F , ε, SF ).

This Hopf algebraAF has the same multiplication and counit but the twisted coproduct and
antipode given by

1F (a) = F1(a)F−1 SF (a) = V S(a)V −1 (2.1)

with

V =
∑

f
(1)
i S(f

(2)
i ) a ∈ A.

The twisting element has to satisfy the equations

(ε ⊗ id)(F) = (id ⊗ ε)(F) = 1 (2.2)

F12(1⊗ id)(F) = F23(id ⊗1)(F). (2.3)

The first is simply a normalization condition and follows from the second relation modulo a
non-zero scalar factor.

If A is a Hopf subalgebra ofB the twisting elementF satisfying (2.1)–(2.3) induces the
twist deformationBF of B. In this case one can puta ∈ B in all expressions (2.1). This will
completely define the Hopf algebraBF . LetA andB be the universal enveloping algebras:
A = U(l) ⊂ B = U(g)with l ⊂ g. If U(l) is the minimal subalgebra on whichF is completely
defined asF ∈ U(l)⊗ U(l) thenl is called the carrier algebra forF [8].

The composition of appropriate twists can be defined asF = F2F1. Here the element
F1 has to satisfy the twist equation with the coproduct of the original Hopf algebra, whileF2

must be its solution for1F1 of the algebra twisted byF1.
If the initial Hopf algebraA is quasitriangular with the universal elementR then so is the

twisted oneAF (m,1F , ε, SF ,RF ) with

RF = F21RF−1. (2.4)

Most of the explicitly known twisting elements have the factorization property with respect
to comultiplication

(1⊗ id)(F) = F23F13 or (1⊗ id)(F) = F13F23 (2.5)

and

(id ⊗1)(F) = F12F13 or (id ⊗1)(F) = F13F12. (2.6)

To guarantee the validity of the twist equation, these identities are to be combined with the
additional requirement

F12F23 = F23F12 (2.7)

or the Yang–Baxter equation onF [10].
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An important subclass of factorizable twists consists of elements satisfying the equations

(1⊗ id)(F) = F13F23 (2.8)

(id ⊗1F )(F) = F12F13. (2.9)

Apart from the universalR-matrixR that satisfies these equations for1F = 1op (1op = τ ◦1,
whereτ(a⊗b) = b⊗a) there are two more well developed cases of such twists: the Jordanian
twist of a Borel algebraB(2)whereFj has the form (1.1) (see [7]) and the extended Jordanian
twists (see [9,11] for details).

One can check that the transformationFj1(σ)F−1
j leads to the primitive coproduct of

σ , i.e.1j(σ) = σ ⊗ 1 + 1⊗ σ . Due to the fact that the Cartan elementH is primitive
in U(B(2)) one finds that the factorized twist equations of the type (2.8), (2.9) are valid for
Fj = exp{H ⊗ σ }:

(1⊗ id)eH⊗σ = eH⊗1⊗σe1⊗H⊗σ

(id ⊗1j)eH⊗σ = eH⊗σ⊗1eH⊗1⊗σ .

The quantizations performed byFj are called Jordanian due to the properties of the
correspondingR-matrix.

It was shown in [9] that the Borel algebraB(2) can be non-trivially extended toL retaining
the property of being a Frobenius algebra. HereL is a four-dimensional Lie algebra with
generators{H,A,B,E} containingB(2)and with a structure of semidirect sum,L = VH ` H,
of one-dimensional spaceVH with basic elementH and a Heisenberg subalgebraH(A,B,E):

[H,E] = 2E [H,A] = αA [H,B] = βB
[A,B] = γE [E,A] = [E,B] = 0 α + β = 2.

(2.10)

The Jordanian twist ofB(2) in L induces the following deformation of the coproducts:

1j (H) = H ⊗ e−2σ + 1⊗H
1j (A) = A⊗ eασ + 1⊗ A
1j (B) = B ⊗ eβσ + 1⊗ B
1j (E) = E ⊗ e2σ + 1⊗ E.

(2.11)

The twisted algebraUj(L) thus obtained permits the additional twisting by the so-called
‘extension’

8E = exp
(
A⊗ Be−βσ

)
.

This means that

FE = exp(A⊗ Be−βσ ) exp(H ⊗ σ)
is a twisting cocycle forU(L). Finally, the comultiplication ofU(L) after being twisted by
FE :

1E (H) = H ⊗ e−2σ + 1⊗H − 2A⊗ Be(α−4)σ

1E (A) = A⊗ e−βσ + 1⊗ A
1E (B) = B ⊗ eβσ + e2σ ⊗ B
1E (E) = E ⊗ e2σ + 1⊗ E

(2.12)

defines the non-trivially deformed quantum algebraUE(L) that we call the extended twisted
algebra.

According to the result of Drinfeld [2] skew (constant) solutions of the classical Yang–
Baxter equation (CYBE) can be quantized and the deformed algebras thus obtained can be
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presented in the form of twisted universal enveloping algebras. On the other hand, such
solutions of the CYBE can be connected with the quasi-Frobenius carrier subalgebras of
the initial classical Lie algebra [16]. A Lie algebrag(µ), with the Lie compositionµ, is
called Frobenius if there exists a linear functionalg∗ ∈ g∗ such that the formb(g1, g2) =
g∗(µ(g1, g2)) is non-degenerate. This means thatg must have a non-degenerate 2-coboundary
b(g1, g2) ∈ B2(g,K ). The algebra is called quasi-Frobenius if it has a non-degenerate 2-
cocycleb(g1, g2) ∈ Z2(g,K ) (not necessarily a coboundary). The classification of quasi-
Frobenius subalgebras insl(n) was given in [16].

The deformations of the quantized algebras include the deformations of their Lie bialgebras
(g, g∗). Let us fix one of the constituentsg∗1(µ

∗
1) (with compositionµ∗1) and deform it to first

order

(µ∗1)t = µ∗1 + tµ∗2

its deforming functionµ∗2 is also a Lie product and the deformation property becomes
reciprocal:µ∗1 can be considered as a first-order deforming function for algebrag∗2(µ

∗
2). Let

g(µ) be a Lie algebra that forms Lie bialgebras with bothg∗1 andg∗2. This means that we have a
one-dimensional family{(g, (g∗1)t )} of Lie bialgebras and correspondingly a one-dimensional
family of quantum deformations{At (g, (g∗1)t )} [17]. This situation provides the possibility
to construct in the set of Hopf algebras a smooth curve connecting quantizations of the type
A(g, g∗1) with those ofA(g, g∗2). Such smooth transitions can involve contractions provided
µ∗2 ∈ B2(g∗1, g

∗
1). This happens in the case ofJ T , ET and some other twists (see [15] and

references therein).

3. The extended twist forU (sl(3))

Extended Jordanian twists are associated with the set{L(α, β, γ, δ)α+β=δ} of Frobenius
algebras [9,11]

[H,E] = δE [H,A] = αA [H,B] = βB
[A,B] = γE [E,A] = [E,B] = 0 α + β = δ. (3.1)

For limiting values ofγ andδ the structure ofL degenerates. For the internal (non-zero) values
of γ andδ the twists associated with the correspondingL ’s are equivalent. It is sufficient to
study the one-dimensional subvarietyL = {L(α, β)α+β=1}, i.e. to consider the carrier algebras

[H,E] = E [H,A] = αA [H,B] = βB
[A,B] = E [E,A] = [E,B] = 0 α + β = 1.

(3.2)

The corresponding group 2-cocycles (twists) are

FE(α,β) = 8E(α,β)8j (3.3)

or

FE ′(α,β) = 8E ′(α,β)8j (3.4)

with

8j = Fj = exp{H ⊗ σ }
8E(α,β) = exp{A⊗ Be−βσ }
8E ′(α,β) = exp{−B ⊗ Ae−ασ }.

(3.5)
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The twists (3.3) and (3.4) define the deformed Hopf algebrasL E(α,β) with the co-structure

1E(α,β) (H) = H ⊗ e−σ + 1⊗H − A⊗ Be−(β+1)σ

1E(α,β) (A) = A⊗ e−βσ + 1⊗ A
1E(α,β) (B) = B ⊗ eβσ + eσ ⊗ B
1E(α,β) (E) = E ⊗ eσ + 1⊗ E

(3.6)

andL E ′(α,β) defined by

1E ′(α,β) (H) = H ⊗ e−σ + 1⊗H +B ⊗ Ae−(α+1)σ

1E ′(α,β) (A) = A⊗ eασ + eσ ⊗ A
1E ′(α,β) (B) = B ⊗ e−ασ + 1⊗ B
1E ′(α,β) (E) = E ⊗ eσ + 1⊗ E.

(3.7)

The sets{L E(α,β)} and{L E ′(α,β)} are equivalent due to the Hopf isomorphismL E(α,β) ≈ L E ′(β,α):

{L E(α, β)} ≈ {L E ′(α, β)} ≈ {L E(α > β)} ∪ {L E ′(α > β)}. (3.8)

So, it is sufficient to use only one of the extensions either8E(α,β) or8E ′(α,β), or one half of the
domain for(α, β).

The setL = {L(α, β)α+β=1,} coincides with the family of four-dimensional Frobenius
algebras that one finds inU(sl(3)) [16]. It was mentioned in [9] that complicated calculations
are needed to write down all the defining coproducts for the canonical extended twisted
U can
E (sl(3)). Here we shall show how to overcome partially this difficulty and to get all

the defining relations in the explicit form.
First we shall construct the simplest member of the family{UE(α,β)(sl(3))}—one of the

peripheric twisted algebrasUP ′(sl(3)). Then, the additional parametrized twist will be applied
and finally we shall prove that the whole set{UE(α,β)(sl(3))} is thus obtained.

Consider the subalgebraL(0, 1) ⊂ sl(3) with generators

H = 1
3(H13 +H23) = 1

3(E11 +E22− 2E33)

A = E12 B = E23 E = E13
(3.9)

and the compositions

[H,E13] = E13 [H,E12] = 0 [H,E23] = E23

[E12, E23] = E13 [E12, E13] = [E23, E13] = 0.
(3.10)

According to the results obtained in [11] (see equations (3.4) and (3.5)) one of the peripheric
twists attributed to this algebra has the form

FP ′ = 8P ′8j = e−E23⊗E12eH⊗σ . (3.11)

Applying the twisting procedure withFP ′ toU(sl(3))we construct the Hopf algebraUP ′(sl(3))
with the usual multiplication ofU(sl(3)) and the coproduct defined by the relations

1P ′(H12) = H12⊗ 1 + 1⊗H12 +H ⊗ (e−σ − 1) +E23⊗ E12e
−σ

1P ′(H13) = H13⊗ 1 + 1⊗H13 + 2H ⊗ (e−σ − 1) + 2E23⊗ E12e
−σ

1P ′(E12) = E12⊗ 1 + eσ ⊗ E12

1P ′(E13) = E13⊗ eσ + 1⊗ E13

1P ′(E21) = E21⊗ 1 + 1⊗ E21−H ⊗ E23e
−σ − E23⊗H12

−E23⊗ E12E23e
−σ +HE23⊗ (1− e−σ )− E2

23⊗ E12e
−σ
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1P ′(E23) = E23⊗ 1 + 1⊗ E23

1P ′(E31) = E31⊗ e−σ + 1⊗ E31 +H ⊗H13 + (1−H)H ⊗ (e−σ − e−2σ )

+ (1−H)E23⊗ E12(e
−σ − 2e−2σ )− E21⊗ E12e

−σ

+E23⊗ E32 +E23⊗H13E12e
−σ +E2

23⊗ E2
12e
−2σ

1P ′(E32) = E32⊗ e−σ + 1⊗ E32 + (H −H23)⊗ E12e
−σ .

(3.12)

The universalR-matrix for this algebra is

RP ′ = e−E12⊗E23eσ⊗He−H⊗σeE23⊗E12 (3.13)

and the classicalr-matrix can be written in the form

rP ′ = E23∧ E12 + 1
3E13∧ (E11 +E22− 2E33). (3.14)

By means of thisr-matrix (or directly from the coproducts (3.12)) the following Lie
compositions forg∗P ′ (the algebra dual tosl(3) in this quantization) can be obtained:

[X11, X13] = − 1
3(X11−X33) [X12, X23] = −(X11−X33)

[X22, X13] = − 1
3(X11−X33) [X12, X13] = −X12

[X33, X13] = +2
3(X11−X33) [X12, X21] = X31

[X11, X23] = +2
3X21 [X13, X31] = X31

[X22, X23] = − 4
3X21 [X23, X32] = X31 (3.15)

[X33, X23] = +2
3X21 [X13, X32] = +X32

[X11, X33] = +1
3X31 [X22, X33] = − 1

3X31

[X11, X12] = +1
3X32 [X12, X33] = − 1

3X32

[X11, X22] = − 1
3X31 [X12, X22] = +2

3X32.

4. The Reshetikhin twist action onUE (sl(3))

It is easy to see that the factorized twist equations (2.5), (2.6) are satisfied whenF is an
exponential of the tensor product of primitive elementsHi,Hj ∈ A:

F = exp(φijHi ⊗Hj). (4.1)

Due to the requirement (2.7)Hi andHj must commute forF to perform a twist. Any set
of commuting primitive elementsHk ∈ A gives rise to such twists. ForA = UDJ (g)
one can insert the Cartan generators ofg in (4.1) to perform an additional quantization
UDJ (g) −→ UDJF (g). This construction was proposed by Reshetikhin [13] to describe the
multiparametric deformations [18] for simple Lie algebras.

The main observation with respect to our present aim is that besides the primitive elementσ

the twisted algebraUP ′(sl(3)) contains the primitive Cartan generatorK:

K = 1
3(H12−H23). (4.2)

The elementK∗ dual toK is orthogonal to the rootE∗ of E ∈ L(α, β), i.e.K commutes with
σ . SoUP ′(sl(3)) contains the Abelian subalgebra ([K, σ ] = 0)

1P ′(K) = K ⊗ 1 + 1⊗K
1P ′(σ ) = σ ⊗ 1 + 1⊗ σ.

(4.3)
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Thus, the additional Reshetikhin twist

FR̃(λ) = eλK⊗σ (4.4)

is applicable to the previously obtained Hopf algebra

UP ′(sl(3))
FR̃(λ)−→ UP ′R̃(λ)(sl(3)). (4.5)

The new twisted algebraUP ′R̃(λ)(sl(3)) is defined by the relations

1P ′R̃(λ)(H12) = H12⊗ 1 + 1⊗H12 + (λK +H)⊗ (e−σ − 1) +E23⊗ E12e
−(λ+1)σ

1P ′R̃(λ)(H13) = (H13− 2(λK +H))⊗ 1 + 2(λK +H)⊗ e−σ

+ 1⊗H13 + 2E23⊗ E12e
−(λ+1)σ

1P ′R̃(λ)(E12) = E12⊗ eλσ + eσ ⊗ E12

1P ′R̃(λ)(E13) = E13⊗ eσ + 1⊗ E13

1P ′R̃(λ)(E21) = E21⊗ e−λσ + 1⊗ E21− E23⊗H12e
−λσ − (λK +H)⊗ E23e

−σ

+ (λK +H)E23⊗ (e−λσ − e−(λ+1)σ )− E2
23⊗ E12e

−(2λ+1)σ

−E23⊗ E12E23e
−(λ+1)σ

1P ′R̃(λ)(E23) = E23⊗ e−λσ + 1⊗ E23

1P ′R̃(λ)(E31) = E31⊗ e−σ + 1⊗ E31 + (λK +H)⊗H13e
−σ +E23⊗ E32e

−λσ

+ (1− λK −H)(λK +H)⊗ (e−σ − e−2σ )− E21⊗ E12e
−(λ+1)σ

+ (1− λK −H)E23⊗ E12e
−λσ (e−σ − 2e−2σ )

+E23⊗H13E12e
−(λ+1)σ +E2

23⊗ E2
12e
−2(λ+1)σ

1P ′R̃(λ)(E32) = E32⊗ e(λ−1)σ + 1⊗ E32 + (λ + 1)K ⊗ E12e
−σ .

(4.6)

According to the associativity of the twisting transformations, the same parametrized set
of algebras could be obtained directly fromU(sl(3)) using the composite twist

FP ′R̃(λ) = FR̃(λ)8E ′8j = eλK⊗σe−E23⊗E12eH⊗σ . (4.7)

This twisting element can be written in the form

FP ′R̃(λ) = e−E23⊗E12e−λσ e(H+λK)⊗σ . (4.8)

The latter is the extended twist for the Lie algebra

[H + λK,E13] = E13 [H + λK,E12] = λE12 [H + λK,E23] = (1− λ)E23

[E12, E23] = E13 [E12, E13] = [E23, E13] = 0.
(4.9)

The relations (4.8) and (4.9) indicate that the family{UP ′R̃(λ)(sl(3))} is the complete set of
twisted Hopf algebras related to the Frobenius subalgebras{L E(α,β) ∈ sl(3)} and thatλ = α.

It must also be stressed that the appropriate Reshetikhin twist of the typeFR̃(λ) can be
constructed for any algebraUE(α,β)(sl(3))—there always exists a Cartan element whose dual
is orthogonal to the rootνE .

Note that any triple of roots{α, β, γ | α + β = γ } of thesl(3) root system can play the
role of the triple{ν12, ν23, ν13} that was selected in our case to form the carrier subalgebra.
The above equations are irrelevant to this choice, only the interrelations of roots are important.
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In sl(3) there always exists the equivalence transformation of the root system that identify any
such triple with the fixed one.

The set of Hopf algebras obtained here corresponds to the parametrized familyrE ′(θ) of
r-matrices

rE ′(θ) = E23∧ E12 + 1
2E13∧H13 + 1

2θE13∧ (H12−H23) (4.10)

where we use the parameterθ = 1
3(2λ−1)measuring the deviation of the extended twist from

the canonical rather than from the peripheric twist.
The algebrasUP ′R̃(λ)(sl(3)) are the quantizations of the Lie bialgebras(sl(3), g∗E ′(θ)). The

compositions ofg∗E ′(θ) are easily derived with the help of (4.10):

[X11, X12] = 1
2(1 + θ)X32 [X11, X22] = θX31

[X11, X23] = 1
2(1− θ)X21 [X11, X13] = − 1

2(θ + 1)(X11−X33)

[X11, X33] = −θX31 [X12, X13] = 1
2(3θ − 1)X12

[X12, X21] = X31 [X12, X23] = −(X11−X33)

[X12, X22] = (θ + 1)X32 [X12, X33] = − 1
2(θ + 1)X32

(4.11)
[X13, X21] = 1

2(3θ + 1)X21 [X13, X22] = −θ(X11−X33)

[X13, X23] = 1
2(3θ + 1)X23 [X13, X31] = X31

[X13, X32] = 1
2(1− 3θ)X32 [X13, X33] = 1

2(θ − 1)(X11−X33)

[X22, X23] = (θ − 1)X21 [X22, X33] = θX31

[X23, X32] = X31 [X23, X33] = 1
2(θ − 1)X21.

5. Multiparametric Drinfeld–Jimbo and ET quantizations

ForUDJ (sl(3)) the Reshetikhin twist is defined by the element

FR = eηH23∧H12. (5.1)

transformsUDJ (sl(3)) into the twisted algebraUDJR(sl(3)) with r-matrix of the form

rDJR = rDJ + rR = rDJ + ηH12∧H23

= rDJ + η(E11∧ E33− E11∧ E22− E22∧ E33). (5.2)

This means that the corresponding dual Lie algebrag∗DJR is the first-order deformation ofg∗DJ
by g∗R andη can be viewed as a deformation parameter. The non-zero compositions ofg∗R are
as follows:

[X11, X12] = −X12 [X11, X21] = X21

[X22, X12] = −X12 [X22, X21] = X21

[X33, X12] = 2X12 [X33, X21] = −2X21

[X11, X13] = X13 [X11, X31] = −X31

[X22, X13] = −2X13 [X22, X31] = 2X31 (5.3)

[X33, X13] = X13 [X33, X31] = −X31

[X11, X23] = 2X23 [X11, X32] = −2X32

[X22, X23] = −X23 [X22, X32] = X32

[X33, X23] = −X23 [X33, X32] = X32.
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The compositionsµ∗DJR of the algebrag∗DJR that was deformed to first order byµ∗R are

[X11, X12] = X12− ηX12 [X11, X21] = X21 + ηX21

[X11, X13] = X13 + ηX13 [X11, X31] = X31− ηX31

[X11, X23] = 2ηX23 [X11, X32] = −2ηX32

[X22, X12] = −X12− ηX12 [X22, X21] = −X21 + ηX21

[X22, X13] = −2ηX13 [X22, X31] = 2ηX31
(5.4)

[X22, X23] = X23− ηX23 [X22, X32] = X32 + ηX32

[X33, X12] = 2ηX12 [X33, X21] = −2ηX21

[X33, X13] = −X13 + ηX13 [X33, X31] = −X31− ηX31

[X33, X23] = −X23− ηX23 [X33, X32] = −X32 + ηX32

[X12, X23] = 2X13 [X21, X32] = 2X31.

According to the lemma proved in [11], the necessary and sufficient condition for the
existence of a smooth transition connecting two quantized Lie bialgebrasUq(g, g

∗
1) and

Uq(g, g
∗
2) is the existence of the first-order deformation ofµ∗1 by µ∗2 (and vice versa). In

our case this is the combination of the compositions (4.11) and (5.4):

µ∗(s, t) = sµ∗DJR(η) + tµ∗E ′(θ) (5.5)

that must be checked. Direct computation shows thatµ∗(s, t) is a Lie composition if and only
if η = θ .

Thus we have proved that for anyUE(α,β)(sl(3)) there exists one and only one twisted
Drinfeld–Jimbo deformationUDJR(λ)(sl(3)) that can be connected with the twisted algebra by
a smooth path whose points are the deformation quantizations.

Remember that bothµ∗DJR(η) andµ∗E ′(θ) are the linear combinations of Lie compositions
(µ∗DJ andµ∗R, µ∗P ′ andµ∗R̃). So, we have a four-dimensional space of compositions with two
fixed planes of Lie compositions containingµ∗DJR(η) andµ∗E ′(θ), respectively. From these
two planes only the correlated lines (withη = θ ) belong to the Lie subspaces that intersect
both planes.

6. Conclusions

Ther-matrix rDJR(η) can be transformed into the mixedr-matrix rDJR(η) + v rE(η) with the
help of an operator exp{v adE} similarly to the ordinary case whenrDJ is transformed into
rDJ + v rcan

E [8]. We note that the elementE may correspond to any rootν of the sl(3)
root system. Varying the roots, one arrives at ther-matrices attributed to different (though
equivalent) sets of extended twisted algebras.

The canonically extended twisted algebraU can
E (sl(3)) introduced in [9] is a special case

of the extended twisted algebras{UE ′(α,β)(sl(3))}. It corresponds to the situation where the
functionalH ∗ is parallel to the rootνE . For the Lie algebras of theAn series this means that
α = β = 1/2. In the appendix we present the full table of the defining relations for this Hopf
algebra.

The peripheric twists helped us to obtain the explicit form of the comultiplication for all the
extended twisted Hopf algebras originating fromU(sl(3)). In the set{UE(α,β)(sl(3))} algebras
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produced by peripheric twists were not distinguished by their relations either with Drinfeld–
Jimbo twists ({UDJ (sl(3))}) or with Reshetikhin twists. We note that the situation changes
when one studies the specific properties of the extensions for peripheric twisted algebras.

The construction presented in this paper can be performed for any two-dimensional
sublattice of the root lattice of any simple Lie algebra. For any highest root of the ‘triple’
there exists the Cartan generator whose dual is orthogonal to this root. This means that the
corresponding special Reshetikhin twist can always be constructed. The same is also true for
the so-called special injections ofL ∈ g. In this case the ‘triple’ will be realized in the root
space submerged in that of the initial simple algebra. Whatever the injection, an ordinary
Reshetikhin twist can be applied to theUDJ (g) to coordinate the properties ofUDJR(g) and
UER(g). The extended twists for different injections and the role of the peripheric twists will
be studied in detail in a forthcoming publication.
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Appendix

In [9] the E-twisted algebraU can
E (sl(3)) was introduced and some of its comultiplications

where presented explicitly. In the family{UE ′(α,β)(sl(3))} it corresponds to the caseα = 1/2.
The involution

E12
 E23 E32
 −E21

E23
 −E12 H12
 H23

E21
 E32 H23
 H12

(A.1)

transformsUE ′(1/2,1/2)(sl(3)) into UE(1/2,1/2)(sl(3)). The full list of defining coproducts for
U can
E (sl(3)) can thus be obtained:

1can
E (H23) = H23⊗ 1 + 1⊗H23 + 1

2H13⊗ (e−2̃σ − 1)− 2ξE12⊗ E23e
−3̃σ

1can
E (H13) = H13⊗ e−2̃σ + 1⊗H13− 4ξE12⊗ E23e

−3̃σ

1can
E (E23) = E23⊗ ẽσ + e2̃σ ⊗ E23

1can
E (E13) = E13⊗ e2̃σ + 1⊗ E13

1can
E (E32) = E32⊗ e−σ̃ + 1⊗ E32 + 2ξE12⊗H23e

−σ̃ + ξH13⊗ E12e
−2̃σ

− ξH13E12⊗ (e−σ̃ − e−3̃σ )− 4ξ2E2
12⊗ E23e

−4̃σ

− 4ξ2E12⊗ E23E12e
−3̃σ

1can
E (E12) = E12⊗ e−σ̃ + 1⊗ E12

1can
E (E31) = E31⊗ e−2̃σ + 1⊗ E31 + ξH13⊗H13e

−2̃σ

+ ξ(1− 1
2H13)H13⊗ (e−2̃σ − e−4̃σ )− 2ξE32⊗ E23e

−3̃σ + 2ξE12⊗ E21e
−σ̃
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− 4ξ2(1− 1
2H13)E12⊗ E23e

−σ̃ (e−2̃σ − 2e−4̃σ )

− 4ξ2E12⊗H13E23e
−3̃σ + 8ξ3E2

12⊗ E2
23e
−6̃σ

1can
E (E21) = E21⊗ e−σ̃ + 1⊗ E21 + ξ(H12−H23)⊗ E23e

−2̃σ .

(A.2)

Note that the deformation parameterξ andσ̃ = 1
2 ln(1 + 2ξE) were introduced here to make

the correlations with the previous results more transparent.
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